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Abstract

The classic Bernoulli–Euler beam is revisited in relation to the Timoshenko beam, using a T-type cross-section. A
practical example of double forces is worked out, where the double forces appear due to the shearing of the horizontal
flange of the T-section. It is shown that a non-local estimate of the mean value of the vertical deflection of the beam
leads to a shear gradient that is energetically consistent with the double force. Therefore, an additional energy term that
includes the derivative of the beam�s curvature leads to a consistent non-local beam model, simple enough to be used in
structural analysis. Such beam models are useful in micro- and nano-technology. Moreover, this simple example opens
the discussion for the importance of non-local differentiation in the averaging theories of Mechanics.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In case when a field varies locally linearly, we may identify it with its mean value over the considered
averaging length, because the mean value of a linearly varying field in a sampling interval is equal to the
value of it in the mid-point of the interval. Field theories where local values are identified with mean values
are called simple theories and the corresponding continua, locally homogeneous. In case however where the
field in the considered sampling interval is not described satisfactorily by a linear function, then of course
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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we have to assume that at least it possesses some curvature. In this case the averaging must be corrected
accordingly, since a linear fit of the data does not suffice for the satisfactory description of the field locally.
Thus for a �quadratically� varying field, we have to approximate it by a two-term Taylor series expansion
around each special point, so as to incorporate the effect of the curvature. Field theories based on averaging
rules that include the effect of higher gradients are called higher gradient theories.

Averaging considerations find many applications in continuum mechanics. In the frame of the engineer-
ing beam-bending theory, it is well known that a locally linear approximation of the vertical deflection w(x)
is not sufficient. In the case of pure bending we approximate w(x) by a two-term Taylor series expansion
around a point x = 0 along the beam x-axis
wðxÞ � wð0Þ þ dw
dx

� �
x¼0

xþ 1

2

d2w
dx2

� �
x¼0

x2 ¼ w0 � wx� 1

2
jx2 ð1Þ
In this case the deformation is not locally homogeneous. For the estimation of the curvature j we need at
least three measurements (at x and x ± Dx) and a parabolic interpolation of the data, Fig. 1.

Accordingly, the engineering bending theory of long prismatic beams is described by a constitutive
relation, which connects the bending moment M to the curvature j = 1/R of the deflection of the
beam,
M ¼ MðjÞ ð2Þ
For a beam segment of length ‘ with �‘/2 6 x 6 ‘/2, the average deflection at its mid-point x = 0 is
hwij0;‘ ¼
1

‘

Z ‘=2

�‘=2

w0 � wn� 1

2
jn2

� �
dn ¼ w0 �

1

24
‘2j ð3Þ
where
j ¼ �d2w
dx2

����
0

� 24

‘2
ðw0 � hwij0;‘Þ ð4Þ
This means that the engineering beam-bending theory is a 2nd gradient continuum theory that accounts for
the effect of the deviation of the local deflection from its mean value over an arbitrary, but sufficiently small,
sampling length.
Fig. 1. Three point interpolation of the bending line.
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2. A simple 2nd gradient structural model

It is well known that the Bernoulli–Euler bending theory of beams is essentially flawed, since it contains
a contradiction as far as the computation of shear forces is concerned. Indeed within such a theory we get
that in meso-structural scale (i.e. over the surface of a cross-section) the relation between shear stress and
shear strain is given as
1 Th
s ¼ Gc; c ¼ dw
dx
þ w ð5Þ
where w(x) is the vertical displacement and w(x) the rotation angle of the cross-section of the beam at posi-
tion x. Eq. (5) implies homogeneous linear and isotropic material response of the beam and so G is the shear
modulus (G = E/(2(1 + m)); E is the elastic modulus and m is Poisson�s ratio).

Assuming that the cross-section perpendicular to the undeformed axis remains perpendicular to the de-
formed axis of the beam, we get
w ¼ � dw
dx

ð6Þ
This assumption together with the above elasticity equation for the shear stresses on the cross-section
stands in contradiction to the existence of finite shear forces,
Q ¼
Z

A
rxz dA ð7Þ
where the integral extends over the whole surface A of the normal to the axis section of the beam. In order
to remedy this contradiction, some authors claimed that the Bernoulli–Euler theory is only true for the so-
called shear-stiff beam; i.e. for a beam with infinite shear modulus
G ¼ E
2ð1þ mÞ ! 1 ðPoisson’s ratio m ¼ �1Þ ð8Þ
However, this assumption is not necessary, since one may derive the Bernoulli–Euler theory as a limiting
case of the so-called Timoshenko beam theory (Timoshenko, 1921).1 In the later case the set of governing
equations consists of the moment equilibrium equation
�Qþ dM
dx
¼ 0 ð9Þ
and the two constitutive equations on a macro-structural level for the bending moment M(x) and shear
force Q(x),
M ¼ ðEIÞ dw
dx

Q ¼ ðGAsÞc ¼ ðGAsÞ wþ dw
dx

� � ð10Þ
where I is the moment of inertia of the section
I ¼
Z

A
y2 dA ð11Þ
e finite element users often encounter severe ‘‘locking’’ of the beam elements due to (8).



Fig. 2. The Timoshenko beam.
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and As is defined as a suitable fraction of the total cross-sectional area (cf. Eq. (13)). Fig. 2 shows the Tim-
oshenko beam, where we notice that the cross-section normal to the undeformed axis does not remain nor-
mal to the deformed axis of the beam.

We introduce the following non-dimensional quantities:
2 Cf.
n ¼ x
L
; x ¼ w

L
; g2 ¼ EI

GAsL2
ð12Þ
where L is a characteristic macro-structural length of the beam, which depends on the load distribution and
type of supports (e.g. the distance between two simple supports or the length of a cantilever beam with ver-
tical load at the end). The number g depends on the selection of the �statically effective� area of the cross-
section,
As ¼ kA ðk P 1Þ ð13Þ

As is calibrated in such a way that the result of the enhanced Timoshenko theory produces the same result
in terms of deflection, as an energy method would do, which considers the contribution of the vertical shear
stresses rxz in the elastic energy of the beam. For example, for a rectangular cross-section with height H,
Timoshenko (1921) predicts
g2 ¼ 1

5
ð1þ mÞ H

L

� �2

� 1 for H < L ð14Þ
We remark that the number g essentially compares the meso-structural length H to the macro-structural
length L. A notable case arises for beams made of auxetic composites (e.g. certain foams) where m!�1
and so g! 0.

With the notation as in Eq. (12), the bending moment equilibrium equation becomes2
1� g2 d2

dn2

� �
w ¼ � dx

dn
) w � � 1þ g2 d2

dn2

� �
dx
dn

ð15Þ
Based on the remarks presented in the Introduction, related to averaging, Eq. (15) is re-interpreted as fol-
lows: The original Bernoulli–Euler hypothesis pertaining to the assumption that cross-sections remain per-
pendicular to the beam axis, Eq. (6), is replaced by a weaker statement which refers to the mean value of the
slope of the deflection curve
w ¼ � dw
dx

� �
ð16Þ
Appendix A.
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For long prismatic beams, in the sense that g < 1, we recover the Bernoulli–Euler beam theory as an
approximation of the Timoshenko beam theory,
Fig. 3.
beam.
w ¼� dw
dx
þOðg2Þ ð17Þ

M ¼ðEIÞj; j ¼ dw
dx
� � d2w

dx2
ð18Þ

Q ¼ðGAsÞc; c ¼ dw
dx
þ w � g2L2 d3x

dx3
) Q � ðEIÞ dj

dx
ð19Þ
3. The T-beam

3.1. The concept of double-force

In the previous sections we dealt with the familiar concepts of shear force and bending moment. In this
section we present an example taken from Structural Analysis that has helped us to understand better the
somehow elusive concept of ‘‘double force’’, which is used in the presentation of 2nd gradient Continuum
theories (cf. Mindlin, 1964).

We consider a beam under the action of loads acting in the direction of the vertical z-axis. The beam has
a symmetric thin-walled cross-section, in the form of a T-shaped section, as shown in Fig. 3.
The T-beam section and the shear stress distribution rxy along the horizontal plate (I). The point M is the shear center of the
The point S is the area center of the cross-section.
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According to the theory of shear for thin-walled sections, we have that along the horizontal plate (I) of
the T-section, shear stresses develop
F

rxy ¼ sðyÞ ¼
�s0 1� y

b=2

� �
; 0 < y 6 b=2

þs0 1þ y
b=2

� �
; �b=2 6 y < 0

8><>: ð20Þ
where
s0 ¼
b=2

W 1

dMy

dx
; W 1 ¼

Iyy

h1

ð21Þ
In Eq. (21), Iyy is the moment of inertia of the beam around the y-axis, My is the bending moment in the y-
axis and h1 is the distance of the horizontal plate (I) from the area center S of the cross-section.

This shear stress distribution gives rise to the action of a force-doublet ðQ
!

y‘;Q
!

yrÞ, which is acting at the
points L and R, to the left and to the right of the shear enter M and at distances b/6 from the symmetry axis;
Fig. 4. This force-doublet is a system of self-equilibrating forces, with
Qyr ¼ �Qy‘ ¼ eQy ¼
1

4
ðbtÞs0 ð22Þ
To the above shear-stress distribution along the plate (I) we assign a shear-strain field, that is given accord-
ing to Hooke�s law as follows:
cxy ¼
rxy

G
¼ s0

G

� 1� 2 y
b

	 

; 0 < y 6 b=2

þ 1þ 2 y
b

	 

; �b=2 6 y < 0

(
ð23Þ
The corresponding elastic shear strain-energy density and the axial distribution of this type of energy is
eðIÞ ¼
1

2
Gc2

xy ) E‘Qy
¼ 2t

Z b=2

0

eðIÞdy ¼ 1

2

bt
3

s2
0

G
ð24Þ
E‘Qy
is the linear elastic strain energy due to shear of the plate (I), i.e. its cross-section average. In order to

interpret Eq. (24), we define the shear-strain gradient:
ig. 4. The force doublet acting at the centers L and R of the shear stress distribution rxy along the horizontal plate (I).



Fig. 5. A geometric construction of the generalized derivative of the shear strain at the shear center M.
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jxyy ¼
o

oy
cxy ð25Þ
We remark that the strain field is discontinuous at the shear center M (y = 0). In order to compute the gen-
eralized gradient of the shear strain at the shear center, we evaluate the strain at the collocation points L and
R, which are the centroids of corresponding distributions to the left and to the right of the shear center M:
cL
xy ¼ cxy jy¼b

6
¼ s0

Gðb=2Þ �
1

3
b

� �
cR

xy ¼ cxy jy¼�b
6
¼ s0

Gðb=2Þ þ
1

3
b

� � ð26Þ
At this point, we define the generalized derivative of the shear strain at the point M as (Fig. 5):
�jxyy ¼
cL

xy � cR
xy

ðLRÞ ¼ �2
s0

Gðb=2Þ ð27Þ
In Appendix B, we derive Eq. (27) through an asymptotic plate theory that models the shearing of plate (I).
We define now a measure for the force doublet ðQ

!
y‘;Q
!

yrÞ, the so-called double-force, with dimensions of
a force moment
Mxyy ¼ �eQy
b
3
¼ � 1

12
s0tb2 ð28Þ
and hypothesize that
E‘Qy
¼ 1

2
Mxyy �jxyy ð29Þ
Indeed, by substituting Eqs. (27) and (28) into (29), we can verify that Eq. (24) holds true.
We observe also that
Mxyy ¼ G
b3t
48

� �
�jxyy ð30Þ
or with the notation
I 0 ¼ b3t
48

ð31Þ



Fig. 6. The constitutive relation between the force doublet and the generalized shear strain gradient.
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we get the constitutive relation for the considered double force (Fig. 6),
3 It i
Mxyy ¼ ðGI 0Þ�jxyy ð32Þ

Eq. (32) is analogous to the one of the ordinary beam-bending theory that relates the bending moment My

to the curvature j ¼ � d2w
dx2

,

My ¼ ðEIyyÞj ð33Þ

The constitutive relation (32) gives rise to the following definition of the double force as the moment of
shear stresses:
Mxyy ¼
Z
ðIÞ

yrxy dA ð34Þ
Indeed, if we evaluate Eq. (34), with Eq. (20) for the shear stresses, we obtain Eq. (28). To summarize, the
main results so far are: The measures of the double force, Eq. (28), the generalized shear gradient, Eq. (27),
and their energy linear distribution, Eq. (24).

3.2. The physical interpretation of �jxyy

With Eq. (21), Eq. (28) becomes
Mxyy ¼ �
1

24

b3th1

Iyy

dMy

dx
ð35Þ
Replacing Eq. (35) into (32), we obtain
�jxyy ¼
1

GI 0
Mxyy ¼ �2h1

1

GIyy

dMy

dx
ð36Þ
which we combine with the curvature-moment constitutive equation of the beam-bending theory, Eq. (33),
yielding
�jxyy ¼ �4ð1þ mÞh1

dj
dx

ð37Þ
Thus, the kinematic quantity �jxyy is proportional to the derivative of the curvature along the beam axis.
We define3
�j0 ¼ �jxyy ¼ �‘c
dj
dx
; ‘c ¼ 4ð1þ mÞh1 ð38Þ
s obvious from Eq. (38) that the shear stiff beam is a bad model.
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and the linear elastic strain-energy density (energy per unit beam length) becomes
E‘ ¼
1

2
ðEIyyÞj2 þ 1

2
ðGAsÞcþ

1

2
ðGI 0Þ‘2

c

dj
dx

� �2

ð39Þ
with 3
c � �g2‘2 d w
dx3

g2‘2 ¼ ðEIyyÞ
GAs

ð40Þ
and from
j � � d2w
dx2

) d3w
dx3
� � dj

dx
ð41Þ
Eq. (39) becomes
E‘ ¼
1

2
ðEIyyÞj2 þ 1

2
ðGAsÞ‘2j02 þ 1

2
ðGI 0Þ‘2

cj
02 ð42Þ
In other words, the work of shear forces doublet is effective in cases of non-pure bending, where the cur-
vature is not constant. The effects of the shear force Q

!
z, acting along the stem, and the shear-force doublet

ðQ
!

y‘;Q
!

yrÞ, which is acting along the plate (I), appear separately in the last two terms of Eq. (42), and both
are related to the derivative j 0 = (dj/dx) of the curvature. Note that the first and third terms in the r.h.s of
Eq. (39) have the form of the Bernoulli–Euler beam within the theory of gradient elasticity, which has been
treated thoroughly by Papargyri-Beskou et al. (2003).

3.3. The mathematical meaning of �jxyy

From Z Z

Mxyy ¼

ðIÞ
yrxy dA ¼ G

ðIÞ
ycxy dA ð43Þ
and Eq. (32), we obtain the (generalized) strain gradient �jxyy as
�jxyy ¼
1

I 0

Z
ðIÞ

ycxy dA ð44Þ
We observe that Eq. (44) is dual to the definition of the double-force, Eq. (43). We can show by inspection
that Eq. (44) is equivalent to Eq. (27).

The above results suggest that for the anti-symmetric distributions, such as
cxy ¼ cðyÞ ¼ s0

G

1þ 2 y
b

	 

; �1=2 6 y=b 6 0

�1þ 2 y
b

	 

; 0 < y=b 6 1=2

(
ð45Þ
which are discontinuous at the shear center M (y = 0), the geometric construction shown in Fig. 5 can be
presented as
�jxyy ¼
cxyð�yÞ

�y
ð46Þ
with
�y ¼
R b=2

0
ycxy dyR b=2

0
cxy dy

ð47Þ
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In Appendix C we show that for a discontinuous function such as the one given through Eq. (45), a Rie-
mann–Liouville type of derivative can be formulated.
4. Practical considerations and applications to micro-electro-mechanical devices

It is important to examine when the energy per-unit-length term due to double-force becomes compara-
ble to the main (bending) term in Eq. (39). Using the T-beam configuration, with the notation of Fig. B.1
and the results of Appendix B, we get
1
2
ðGI 0Þ‘2

c

dj
dx

� �2

1
2
ðEIyyÞj2

¼ Q2
z

M2
y

ð1þ mÞ
2

b2 e
b

h
t

e
b

h
t
þ 2

� �2
ð48Þ
For a cantilever beam of length ‘ with a concentrated force at the free end,
Q2
z

M2
y

¼ ‘2 ð49Þ
and with that Eq. (48) becomes
1
2
ðGI 0Þ‘2

c

dj
dx

� �2

1
2
ðEIyyÞj2

¼ b2

‘2

ð1þ mÞ
2

e
b

h
t

e
b

h
t
þ 2

� �2
ð50Þ
If we assume that
eh
bt
� 2 ð51Þ
then Eq. (50) is approximated by
1
2
ðGI 0Þ‘2

c

dj
dx

� �2

1
2
ðEIyyÞj2

¼ ð1þ mÞ
8

b
‘

� �2 e=b
h=t

ð52Þ
It is interesting to note that for low values of the ratio (h/t), the energy term due to the double-force can
become considerable. For example, taking (e/b) = 1, m = 0, (h/t) = 1/16 and (b/‘) = 1/4, the double force
energy is about 1/8 of the bending energy.

Periodic conducting lines (e.g. Al or Cu) which are patterned (e.g. etched) on insulating plates (e.g. Si
wafers) are common in microelectronic devices. The internal stresses that develop in the conducting lines
affect the passage of electric current. The experimental estimation of these stresses rely on measuring the
curvature of the plates. A schematic of the line/plate system is shown in Fig. 7. Obviously, under proper
conditions, the periodic cell shown in Fig. 7 resembles a T-beam and can be modeled as such. Typical
dimensions of such configurations are t = 500 lm and h = 1 lm. Yeo et al. (1995) found that for thin lines,
the experimental curvatures appear lower than those expected from the elastic analysis. Although this effect
could be partly due to plasticity that develops in the conducting lines, the effect of strain gradient (enhanced
due to the high ratio t/h) is also a possible explanation. The stiffer response of beams with energy represen-
tation as in Eq. (39) has been shown in detail by Papargyri-Beskou et al. (2003).



Fig. 7. Patterned metal lines on insulating plate (wafer) in microelectronic devices.
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5. Conclusions

We have demonstrated an example of double-forces taken from the bending analysis of a beam with
T-type cross-section. The double-force is related to the shear strains that develop on the horizontal flange
of the beam. This in turn, gives rise to the construction of a generalized shear strain-gradient and connects
through equilibrium the double force with the curvature-gradient of the beam. A novel characteristic length
appears that scales with the distance of the shear center from the geometric center of the cross-section. At
the end, a non-local beam theory is developed that accounts for an additional energy term of the curvature-
gradient. The analysis can be extended easily to other types of thin-walled sections, homogeneous or
inhomogeneous.

The newly found length, related to the gradient of the beam curvature, deserves a few additional com-
ments. Suppose that an experimentalist is measuring load and deflection of cantilever T-beams of various
lengths, loaded at their free ends with concentrated vertical forces. Then, even with a Tisoshenko beam
model, there will be a stiffening effect for short beams, leading to a ‘‘length scale effect’’. The interesting
point is that this length scale effect has a definite structural origin, other than a material one. Therefore,
one has to be careful in interpreting length scale effects by assuming material parameters only. A detailed
mechanical analysis can unravel the issue.

Returning to the double-force concept, our example shows that advanced continuum theories can be for-
mulated by recognizing double-forces, which are energetically dual with generalized kinematic gradients.
Such formulations are capable to describe small size structures, offering novel engineering methodologies
to the design of micro-electro-mechanical devices and assisting in the interpretation of material properties
in the micro-scale.

We should point out that according to Mindlin one has to assume that the micro-displacement can be
expressed as a sum of products of specified functions of the local coordinates in the micro-volume, e.g. in
the form of u0j ¼ x0kwkj (cf. Mindlin, 1964, truncated Taylor series expansion, Eq. 1.6). The present example
of the T-beam shows clearly that the deformation at the micro-element scale needs not be continuous.
Indeed we expect that at the level of the micro-element the deformation to be to some degree always
discontinuous. Moreover we should bring to the attention that within the so-called representative elemen-
tary volume (REV) there is not such a thing like a local point, in the vicinity of which one could expand a
function as a Taylor series. If this were to be the case, then micro- and macro-scales would have been
indistinguishable. This has been always appreciated in the sense that most researchers are talking about
integral averages of various physical properties over the REV. However this idea was only used for the
value of some property (e.g. the density) but not for the derivative of it. It seems, that the above example
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justifies the suggestion to use non-local derivatives within the REV, such as the Riemann–Liouville
operator.

The above non-local differentiation will allow to differentiate strongly fluctuating properties by consid-
ering their overall trend within the REV. As an example we could refer here to the long standing contro-
versy in granular mechanics (Bardet and Vardoulakis, 2001), where the application of a Cosserat
continuum approach is criticized using the argument that, within the REV, the existence of a large popu-
lation of rolling contacts (i.e. dipoles) introduces a non-smooth rotation field that is not differentiable to
yield the local value of curvature. The non-local differentiation in the above sense, would naturally elimi-
nate the effect of the rolling contacts and leave only the effect of the (dissipative) sliding contacts.
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Appendix A. The Schrödinger operator

We consider the differential equation
ð1� ‘2r2ÞW ¼ K ðA:1Þ

Notice that in the literature the operator
LS ¼ 1� ‘2r2 ðA:2Þ

is known as the Schrödinger operator.

We assume for simplicity the 1D-case (r2 � o2

ox2). We assume also that the Fourier transforms of the func-
tions W(x) and K(x) as well as of their derivatives up to order two exist. In that case the functions W , W 0

and W 0 0 are continuous and W! 0 as jxj ! 1; the same is assumed to hold also for K(x).
Thus we set
Y ðaÞ ¼ EfWðxÞg ¼
Z þ1

�1
WðxÞe�iax dx; LðaÞ ¼ EfKg ¼

Z þ1

�1
KðxÞe�iax dx

WðxÞ ¼ E�1fY ðaÞg ¼ 1

2p

Z þ1

�1
Y ðaÞeiax da; K ¼ E�1fLðaÞg ¼

Z þ1

�1
LðaÞeiax da

ðA:3Þ
If we apply the Fourier Transformation on both sides of Eq. (A.1), we get
Y � ‘2a2Y ¼ L ) Y ¼ L

1� ða‘Þ2
¼ ð1þ ða‘Þ2ÞLþOðða‘Þ4Þ ðA:4Þ
By applying the inverse Fourier transform on the last equation, we get
E�1fY g � E�1fLg þ ‘2E�1fa2Lg

or
W � Kþ ‘2 d2K
dx2

ðA:5Þ
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Under suitable circumstances the inversion of Eq. (A.1) is then
W � ð1þ ‘2r2ÞK
Appendix B. Detailed derivation of the derivative of the shear strain at the center of shear of a T-beam

In the analysis, a generalized derivative of the shear strain at the center of shear of a T-beam was defined
by Eq. (27). It is the purpose of the present appendix to show that the fore-mentioned derivative is almost
exact, if we allow for a more refined elastic analysis of the T-beam in the lines of Timoshenko and Goodier
(1970). In this context, the T-beam is treated in way closer to a full 3-D analysis by treating the horizontal
flanges of the beam as two 2-D plates that are fixed on the vertical web of the beam. Noting that the region
of interest is at the shear center M of the T-beam, we follow a standard asymptotic analysis assuming the
2-D plates to extend indefinitely in the y-direction, as in Fig. B.1. The beam is supposed to have a length
2‘, the vertical web is 2e long and has thickness h.

For simplicity, we assume a moment distribution along the length of the beam to vary sinusoidal, as it
typically approximates a simply supported beam with uniformly distributed load,
My ¼ M0 cosðpx=‘Þ ðB:1Þ

where M0 is the moment in the middle of the beam (x = 0).

Using Airy�s stress function U, Timoshenko and Goodier (1970) give the following solution:
U ¼ ðF 1 expð�py=‘Þ þ F 2ð1þ ðpy=‘ÞÞ expðpy=‘ÞÞ cosðpx=‘Þ ðB:2Þ
where F1 and F2 are constants with the dimension of a force, which can be found by minimizing the strain
energy of the flange and of the web,
F 1 ¼
‘

2pt
P 0; F 2 ¼ �

1þ m
2

F 1 ðB:3Þ
Fig. B.1. The details of the geometry around the shear center M.
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with
P 0 ¼
M0

e 1þ Iw
Awe2 þ pð3þ 2m� m2Þ Iw

te2‘

� � ; Iw ¼
2

3
e3h; Aw ¼ 2eh ðB:4Þ
In these expressions m is Poisson�s ratio of the beam, Aw is the area of the web and Iw is the area moment of
the web.

The effective width of the flange b can be obtained by applying the total equilibrium of moments to the
T-beam through the axial stresses,
rxx ¼
o2U
ox2

ðB:5Þ
which act in the flange. This yields the following effective width of the flange:
b ¼ 4

pð3þ 2m� m2Þ ‘ ðB:6Þ
The shear stress
rxy ¼ �
o2U
oyox

ðB:7Þ
relates by Hooke�s Law with the shear strain as
cxy ¼
rxy

G
ðB:8Þ
where G is the shear modulus of the beam.
Taking the y-derivative of the shear strain and evaluating it at the shear center M(y = 0), after some alge-

bra, we obtain
ocxy

oy

� �
y¼0

¼ � 1

G
dMy

dx
3

2eð2bt þ ehÞ
3þ m

3þ 2m� m2
ðB:9Þ
It is of great interest to point that for m!�1, the above form gives an infinite shear strain derivative, thus
making the model inadequate (something that was found in the main analysis as well, but at a later stage).
For m = 0, we obtain
ocxy

oy

� �
y¼0

¼ � 1

G
dMy

dx
3

2eð2bt þ ehÞ ðB:10Þ
which is exactly the result of Eq. (27), provided we replace in Eq. (21) the thin-wall approximations
h1 ¼
e2t

tb=2þ eh

Iyy ¼
2

3
e3h

ehþ 2bt
tb=2þ eh

ðB:11Þ
Clearly, for most common (positive) values of Poisson ratio (e.g. 1/3, 1/4), Eq. (B.9) is close to Eq. (27). The
largest deviation occurs for near the incompressibility limit m = 0.5, where Eq. (B.9) predicts values 7% low-
er than Eq. (27).

In case of clamped ends, we can utilize the Saint Venant principle particularized for plates, since the hor-
izontal and vertical flange of the T-beam can be modeled as thin plate strips. Since both horizontal and
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vertical flange of the T-beam have the same curvature, the influence of clamping is to provide an end mo-
ment and a self-equilibrated stress system that influences a length of the beam approximately 2e from the
clamped end (Horgan and Knowles, 1983). The moment due to clamping will not change the picture of the
above solution for the main part of the beam.
Appendix C. Generalized derivative of the shear strain at the horizontal flanges of a T-beam

The generalized strain gradient of an antisymmetric field such as the shear strain at the horizontal flanges
of a T-beam, with discontinuity at the origin, can be formulated by using the definition of the left Riemann–
Liouville derivative of a function4 f(x),
4 Cf.
xDa
bf ðxÞ ¼ ð�1Þn dn

dxn xIn�a
b f ðxÞ ðn ¼ Integral partðaÞ þ 1Þ ðC:1Þ
where the Riemann–Liouville fractional integral is defined as
aIn
xf ðxÞ ¼ 1

ðn� 1Þ!

Z x

a
ðx� uÞn�1f ðuÞdu ðC:2Þ
As mentioned in the considered case the function at hand is discontinuous at the origin,
cxy ¼
cR

cL

�
¼ s0

G

fR ¼ 1þ 2w �1=2 6 w < 0;

fL ¼ �1þ 2w 0 < w 6 1=2;

�
w ¼ y

b
ðC:3Þ
We define the generalized derivative of the above discontinuous shear strain distribution as the sum of 1st
order the left Riemann–Liouville derivatives of both branches within the interval of interest,
�jxyy ¼ yD1
�1=2cRðyÞ þ yD1

1=2cLðyÞ ðC:4Þ
with
yDa
bf ðyÞ ¼ 1

b wDa
bf ðwÞ ðC:5Þ
It should be noted that the selection of the 1st order Riemann–Liouville derivative is due to the linearity of
(C.3). Other functions may require different orders of the Riemann–Liouville derivative.

In the considered case we have
wD1
�1=2fRðwÞ ¼ ð�1Þ2 d2

dx2 wI2�1
�1=2fRðwÞ ¼ �

d2

dx2 �1=2I1
wfRðwÞ ðC:6Þ
and
wD1
1=2fLðwÞ ¼ ð�1Þ2 d2

dx2 wI2�1
1=2 fLðwÞ ¼

d2

dx2 wI1
1=2fRðwÞ ðC:7Þ
Butzer and Westphal (2000).
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Thus we get
�1=2I1
wfRðwÞ ¼

1

ð1� 1Þ!

Z w

�1=2

ðw� uÞ1�1fRðuÞdu ¼
Z w

�1=2

ð1þ 2uÞdu ¼ ½uþ u2�w�1=2

¼ wþ w2 � � 1

2
þ � 1

2

� �2
 !

¼ wþ w2 þ 1

4
ðC:8Þ
and
wI1
1=2fRðwÞ ¼

1

ð1� 1Þ!

Z 1=2

w
ðw� uÞ1�1fLðuÞdu ¼

Z 1=2

w
ð�1þ 2uÞdu ¼ ½�uþ u2�1=2

w

¼ � 1

2
þ 1

2

� �2
 !

� ð�wþ w2Þ ¼ � 1

4
þ w� w2 ðC:9Þ
Thus
wD1
�1=2fRðwÞ ¼ �

d2

dx2

1

4
þ wþ w2

� �
¼ �2 ðC:10Þ

wD1
1=2fLðwÞ ¼

d2

dx2
� 1

4
þ w� w2

� �
¼ �2 ðC:11Þ
and from Eqs. (C.4) and (C.5) we recover Eq. (27),
�jxyy ¼
s0

G
1

b
ð�4Þ ðC:12Þ
In that sense �jxyy is constant along the flanges of the T-beam. This result is also in accordance with Eq. (37).
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